Synthesis and Properties of a Dithiirane trans-1,2-Dioxide, a Three-Membered vic-Disulfoxide

Akihiko Ishii,* Masayuki Ohishi, Kimiyo Matsumoto, and Toshiyuki Takayanagi

*Department of Chemistry, Faculty of Science, Saitama Uni*V*ersity, Sakura-ku, Saitama, Saitama 338-8570, Japan*

ishiiaki@chem.saitama-u.ac.jp

Received October 24, 2005

ABSTRACT

cis- and trans-3-(1-adamantyl)-3-tert-butyldithiirane 1-oxides were oxidized with dimethyldioxirane to give the trans-1,2-dioxide. Thermal decomposition of the 1,2-dioxide yielded the corresponding (E)- and (Z)-sulfines, thioketone, and cis- and trans-dithiirane 1-oxides. In the thermolysis, decomposition to the sulfines and SO was the main path and that to the thioketone and SO₂ was the minor one. The two **decomposition processes and epimerization to the cis-1,2-dioxide were analyzed theoretically. SO generated in situ reacted with thioketones as additives to give the corresponding dithiirane 1-oxides.**

V*ic*-Disulfoxide **¹** has been recognized as an unstable intermediate in the oxidation of disulfide with electrophilic oxidants (Scheme 1),¹ and therefore has been drawing

considerable attention experimentally²⁻⁴ and theoretically.^{1c,5} Freeman and Angeletakis reported that *vic*-disulfoxides derived from acyclic disulfides were stable in solution at low temperatures (-40 to -20 °C).² Folkins and Harpp observed a bicyclic *vic*-disulfoxide 2 by ¹H NMR spectroscopy.³ We recently succeeded for the first time in the isolation of *vic*disulfoxides $3-5^{6-8}$ under ambient conditions. All of the *vic*disulfoxides have $S(O)-S(O)$ moieties in five-memberedring systems.

⁽¹⁾ For reviews, see: (a) Freeman, F. *Chem. Re*V. **¹⁹⁸⁴**, *⁸⁴*, 117-135. (b) Clenann, E. L.; Stensaas, K. L. *Org. Prep. Proced. Int*. **¹⁹⁹⁸**, *³⁰*, 551- 600. (c) Lacombe, S. *Re*V*iews on Heteroatom Chemistry*; Oae, S., Ed.;

Myu: Tokyo, Japan, 1999; Vol. 21, pp 1-41. (2) (a) Freeman, F.; Angeletakis, C. N. *J. Am. Chem. Soc*. **1981**, *103*, ⁶²³²-6235. (b) Freeman, F.; Angeletakis, C. N. *J. Am. Chem. Soc*. **¹⁹⁸²**, *¹⁰⁴*, 5766-5774. (c) Freeman, F.; Angeletakis, C. N. *J. Am. Chem. Soc.* **¹⁹⁸³**, *¹⁰⁵*, 4039-4049.

⁽³⁾ Folkins, P. L.; Harpp, D. N. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 8998-

^{9000. (4)} For other recent papers on *vic*-disulfoxides see: (a) Freeman, F.; (4) For other recent papers on *vic*-disulfoxides see: (a) Freeman, F.; e. C. *J. Org. Chem.* **1988**, 53, 1263–1266. (b) Block, E.; Bayer, T. *J.* Lee, C. *J. Org. Chem*. **¹⁹⁸⁸**, *⁵³*, 1263-1266. (b) Block, E.; Bayer, T. *J. Am. Chem. Soc.* **¹⁹⁹⁰**, *¹¹²*, 4584-4585. (c) Gu, D.; Harpp, D. N. *Tetrahedron Lett*. **¹⁹⁹³**, *³⁴*, 67-70. (d) Clennan, E. L.; Zhang, H. *J. Org. Chem*. **¹⁹⁹⁴**, *⁵⁹*, 7952-7954. (e) Nakayama, J.; Mizumura, A.; Yokomori, Y.; Krebs, A.; Schütz, K. Tetrahedron Lett. **1995**, 36, 8583-8586. (f) Clennan, E. L.; Stensaas, K. L. *J. Org. Chem*. **¹⁹⁹⁶**, *⁶¹*, 7911-7917 and references therein.

^{(5) (}a) Lacombe, S.; Loudet, M.; Dargelos, A.; Robert-Banchereau, E.
J. Org. Chem. 1998, 63, 2281-2291. (b) Gregory, D. D.; Jenks, W. S. J. *J. Org. Chem*. **¹⁹⁹⁸**, *⁶³*, 2281-2291. (b) Gregory, D. D.; Jenks, W. S. *J. Phys. Chem. A* **²⁰⁰³**, *¹⁰⁷*, 3414-3423. (c) Steudel, R.; Drozdova, Y. *Chem. Eur. J*. **¹⁹⁹⁶**, *²*, 1060-1067.

^{(6) (}a) Ishii, A.; Nakabayashi, M.; Nakayama, J. *J. Am. Chem. Soc*. **1999**, *¹²¹*, 7959-7960. (b) Ishii, A.; Nakabayashi, M.; Jin, Y.-N.; Nakayama, J. *J. Organomet. Chem.* **²⁰⁰⁰**, *⁶¹¹*, 127-135. (7) (a) Oshida, H.; Ishii, A.; Nakayama, J. *Tetrahedron Lett.* **2002**, *43*,

⁵⁰³³-5037. (b) Oshida, H.; Ishii, A.; Nakayama, J. *J. Org. Chem*. **²⁰⁰⁴**, *⁶⁹*, 1695-1703.

⁽⁸⁾ Ishii, A.; Kashiura, S.; Oshida, H.; Nakayama, J. *Org. Lett.* **2004**, *6*, ²⁶²³-2626.

We examined oxidation of dithiirane 1-oxides, *cis*-**6**, and *trans*-**6**, 6,9 with the expectation of obtaining the corresponding dithiirane 1,2-dioxide, a three-membered V*ic*-disulfoxide. We previously reported the oxidation of 3-phenyl-3-(4-keto-*tert*alkyl)dithiirane 1-oxide **7** with *m*-chloroperoxybenzoic acid to give bicyclic 1,4,2-dioxathiolane 2-oxide **8**. ¹⁰ Here we employed 3,3-di-*tert*-alkyldithiirane 1-oxides **6**, not possessing other functional groups, and dimethyldioxirane as an oxidant.

Dithiirane 1-oxide *cis*-**6** was treated with an acetone solution of dimethyldioxirane $(DMD)^{11}$ in dichloromethane at -20 °C. An excess amount of DMD (5.7 molar equiv) was necessary for complete consumption of *cis*-**6**. The ¹ H NMR spectrum of the reaction mixture showed a singlet at *δ* 1.39, indicating formation of a new compound (**9**). The new compound was isolated in 80% yield by evaporation of the solvent, washing the residue with hexane, and then recrystallization from a mixed solvent of hexane and dichloromethane, where the manipulations were carried out at -20 °C (eq 1). Oxidation of *trans*-**6** with DMD provided the same compound **9**¹² in 42% isolated yield. In the oxidation of *cis*and *trans*-**6**, trifluoroperoxyacetic acid was also available.

In the ¹ H NMR of **9**, protons of *tert*-butyl (*δ* 1.39) and three methylenes $(\delta$ 2.19) (the 2-positions of 1-Ad) underwent low-field shifts owing to the respective sulfoxide groups orienting in the same direction. These values are very similar to those of *trans*-**6** (*δ* 1.44; cf. *δ* 1.09 for *cis*-**6**) and *cis*-**6** (*δ* 2.20; cf. *δ* 1.74 and 1.84 for *trans*-**6**),6,9 respectively. The 13C NMR spectrum of **9** showed a low-field shift of the dithiirane carbon by ca. 20 ppm (*δ* 106.9) compared with the corresponding carbons of *cis*- $\bf{6}$ (δ 86.2) and *trans*- $\bf{6}$ (*δ* 87.7). In the IR spectrum, strong absorptions were observed at 1064, 1084, and 1114 cm^{-1} , which were assignable to those due to $S=O$ stretching vibrations.

The structure of **9** was finally determined by X-ray crystallography to be a dithiirane *trans*-1,2-dioxide (Figure 1).12 There are two independent molecules in the unit cell.

Figure 1. ORTEP drawing of 3-(1-adamantyl)-3-*tert*-butyldithiirane *trans*-1,2-dioxide (**9**) (50% ellipsoid).12

The averaged $S-S$ bond length was 2.242(2) Å, which is longer than that [2.092(2) Å] of *trans*-**6** by 0.150 Å. In comparison with other *vic*-disulfoxides, the value is comparable to those of 1,2,4-trithiolane 1,2-dioxides $4a$ [2.245(3) Å],^{7a} **4b** $[2.237(1)$ Å],^{7b} and **4c** $[2.241(1)$ Å]^{7b} and shorter than those of tetrathiolane 2,3-dioxide 3 [2.301(1) Å]⁶ and bicyclic *vic*-disulfoxide **5** [2.341(2) Å].⁸ The averaged bond angle C2-C1-C12 widens up to $123.4(5)$ °, and the averaged dihedral angle $O1-S1-S2-O2$ is $149.6(3)^\circ$.

⁽⁹⁾ Jin, Y.-N.; Ishii, A.; Sugihara, Y.; Nakayama, J. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹* ³⁵²⁵-3528.

⁽¹⁰⁾ Ishii, A.; Akazawa, T.; Ding, M.-X.; Honjo, T.; Maruta, T.; Nakamura, S.; Nagaya, H.; Ogura, M.; Teramoto, K.; Shiro, M.; Hoshino, M.; Nakayama, J. *Bull. Chem. Soc. Jpn.* **¹⁹⁹⁷**, *⁷⁰*, 509-523.

^{(11) (}a) Adam, W.; Bialas, J.; Hadjiarapoglou, L. *Chem. Ber*. **1991**, *124*, 2377. (b) Adam, W.; Hadjiarapoglou, L.; Smerz, A. *Chem. Ber.* **1991**, *124*, $227 - 232$

⁽¹²⁾ Pale yellow crystals, mp 95 \degree C dec (hexane-dichloromethane). ¹H NMR (CDCl3, 400 MHz) *δ* 1.39 (s, 9H), 1.71 (m, 6H), 2.04 (br s, 3H), 2.19 (br s, 6H); 13C NMR (CDCl3, 100.7 MHz) *δ* 29.02 (CH3), 31.41 (br s, CH), 36.35 (CH₂), 41.10 (br s, CH₂), 42.17 (C), 46.08 (C), 106.92 (S-C-S); IR (KBr) 1064, 1084, 1114 cm^{-1} (S=O). Anal. Calcd for C15H24O2S2: C, 59.96; H, 8.05. Found: C, 60.18; H, 8.12. Crystallographic data for **9** (153 K): C₁₅H₂₄O₂S₂, $M = 300.48$, pale yellow plate, 0.30 \times 0.16×0.02 mm³, monoclinic, $P2_1/c$, $a = 11.504(1)$ Å, $b = 13.877(1)$ Å, $c = 19.440(2)$ Å, $\beta = 111.041(4)$ °, $V = 2896.4(5)$ Å³, $\rho_{\text{caled}} = 1.378$ Mg *c* = 19.440(2) Å, β = 111.041(4)°, *V* = 2896.4(5) Å³, ρ_{calcd} = 1.378 Mg
m⁻³ $Z = 8$ $\mu(\text{Mo K}\alpha) = 0.364$ mm⁻¹ $R1 = 0.0968$ $wR2 = 0.2410$ GOF m^{-3} , $Z = 8$, μ (Mo K α) = 0.364 mm⁻¹, $R1 = 0.0968$, $wR2 = 0.2410$, GOF
= 1.035. Relevant bond length (Å) and angle (deg) data; molecule A (left) $= 1.035$. Relevant bond length (Å) and angle (deg) data: molecule A (left), S1A-O1A 1.476(5), S1A-C1A 1.855(6), S1A-S2A 2.241(2), S2A-O2A 1.469(5), S2A-C1A 1.860(6), C1A-C12A 1.578(8), C1A-C2A 1.580- (7), O1A-S1A-C1A 115.6(3), O1A-S1A-S2A 113.6(2), C1A-S1A-S2A 52.99(19), O2A-S2A-C1A 116.6(3), O2A-S2A-S1A 115.0(2), C1A-S2A-S1A 52.79(18), C12A-C1A-C2A 123.3(5), C12A-C1A-S1A 110.2(4), C2A-C1A-S1A 114.8(4), C12A-C1A-S2A 113.8(4), C2A-C1A-S2A 110.2(4), S1A-C1A-S2A 74.2(2); molecule B (right). C2A-C1A-S2A 110.2(4), S1A-C1A-S2A 74.2(2); molecule B (right), S1B-O1B 1 468(5), S1B-C1B 1 863(6), S1B-S2B 2 243(2), S2B-O2B S1B-O1B 1.468(5), S1B-C1B 1.863(6), S1B-S2B 2.243(2), S2B-O2B 1.471(5), S2B-C1B 1.875(6), C1B-C12B 1.573(8), C1B-C2B 1.579(7), O1B-S1B-C1B 116.1(3), O1B-S1B-S2B 113.1(2), C1B-S1B-S2B 53.37(18), O2B-S2B-C1B 115.3(3), O2B-S2B-S1B 114.5(2), C1B-S2B-S1B 52.89(18), C12B-C1B-C2B 123.5(5), C12B-C1B-S1B 109.7- (4), C2B-C1B-S1B 114.5(4), C12B-C1B-S2B 114.4(4), C2B-C1B-S2B 110.4(4), S1B-C1B-S2B 73.7(2).

Dithiirane 1,2-dioxide **9** was stable in the crystalline state but decomposed gradually in solution at room temperature; letting a solution of 9 in CDCl₃ stand at room temperature led to almost complete decomposition to (*E*)- and (*Z*)-sulfines 10^{6b} after 9 days. Heating 9 in refluxing CDCl₃ under argon produced (*E*)- and (*Z*)-sulfines **10** as the main products together with *cis*-**6**, *trans*-**6**, thioketone **11**, and ketone **12** in a ratio of $26/43/10/10/11/2$ on the basis of the ¹H NMR integral ratio (eq 2).

The formation of sulfines **10** as the main products indicated straightforwardly that the decomposition of **9** into **10** and sulfur monoxide (SO) was the main path (eq 3). In the thermolysis, the formation of dithiirane 1-oxide **6** and thioketone **11** is significant. In our speculation, **9** isomerizes to dithiirane 1,1-dioxide **13** in a minor path, and **13** further decomposes to thioketone 11 and $SO₂$ (eq 4). Thioketone **11** thus formed reacts with SO, generated in eq 3, to give dithiirane 1-oxides **6** (eq 5).

To verify the above speculation, thermolysis of **9** was examined in the presence of a 1,3-butadiene¹³ or thioketones¹⁴ to trap SO (eq 6). In the case of 2,3-dimethyl-1,3-butadiene (7.2 equiv), the SO-trapping product, 2,5-dihydrothiophene 1-oxide **14**, ¹³ was formed in 19% yield, together with (*E*)-

10 (37%), (*Z*)-**10** (40%), *cis*-**6** (5%), *trans*-**6** (5%), **11** (10%), and 12 (3%).¹⁵ In the presence of di-1-adamantyl thioketone **15** (4.6 equivs), SO was trapped more effectively to furnish dithiirane 1-oxide **16**⁹ in 41% yield together with (*E*)-**10**, (*Z*)-**10**, *cis*-**6**, *trans*-**6**, and **11**. ¹⁶ The use of other thioketones, *tert*-butyl phenyl thioketone,¹⁷ and 1,1,3,3-tetramethylindane-2-thione18 gave the corresponding dithiirane 1-oxides (**17**¹⁹ and **18**20), albeit in lower yields (24% and 21% yields, respectively) probably due to their instability under the conditions. The yields of these SO adducts were calculated on the assumption that 1 mol of **9** generates 1 mol of SO. The above results not only verify the generation of SO (eq 3) but also provide an alternative route for the synthesis of dithiirane 1-oxides (eq 5).^{19,21} Decomposition pathways of dithiirane *trans*-1,2-dioxide **9** were analyzed theoretically with DFT calculations²² on 3,3-di-tert-butyldithiirane trans-1,2-dioxide (**19**) as the model compound. Inverting one of the sulfoxide groups of **19** outside of the dithiirane ring leads to epimerization into *cis*-1,2-dioxide **20**, which is higher in energy than 19 by 4.6 kcal mol⁻¹. This epimerization proceeds through a large-barrier transition state (TS1) (54.3 $kcal$ mol⁻¹) on the singlet potential energy surface. On the other hand, inverting the sulfoxide group inside of the ring leads to ring expansion to 2,1,3-oxadithietane **21** (6.7 kcal mol-¹), a three-membered *OS*-sulfenyl sulfinate, through TS2 $(23.4 \text{ kcal mol}^{-1})$, followed by further isomerization to dithiirane $1,1$ -dioxide $22(6.7 \text{ kcal mol}^{-1})$ through TS3 (47.9) kcal mol⁻¹). Isomerization of *vic*-disulfoxides to thiosul-
fonates through *OS*-sulfenyl sulfinates has been well studied fonates through *OS*-sulfenyl sulfinates has been well studied theoretically and experimentally.¹⁻⁵ The 1,1-dioxide 22 decomposes to *t*-Bu₂C=S and SO₂ (-26.5 kcal mol⁻¹)
through TS4 (18.2 kcal mol⁻¹). When the S-S bond of 19 through TS4 $(18.2 \text{ kcal mol}^{-1})$. When the S-S bond of **19** is elongated an intersystem crossing (ISC) from the singlet is elongated, an intersystem crossing (ISC) from the singlet potential energy surface to the triplet potential energy surface

(17) Ahmed, R.; Lwoski, W. *Tetrahedron Lett.* **¹⁹⁶⁹**, *¹⁰*, 3611-3612.

(18) Klages, C. P.; Voss, J. *Chem. Ber.* **¹⁹⁸⁰**, *¹¹³*, 2255-2277.

(19) Ishii, A.; Kawai, T.; Tekura, K.; Oshida, H.; Nakayama, J. *Angew. Chem., Int. Ed*. **²⁰⁰¹**, *⁴⁰*, 1924-1926.

(20) Ishii, A.; Yamashita, R.; Saito, M.; Nakayama, J. *J. Org. Chem.* **²⁰⁰³**, *⁶⁸*, 1555-1558.

(21) Nakayama, J.; Ishii, A. *Ad*V*. Heterocycl. Chem.* **²⁰⁰⁰**, *⁷⁷*, 221- 284.

^{(13) (}a) Dodson, R. M.; Sauers, R. F. *Chem. Commun*. **¹⁹⁶⁷**, 1189- 1190. (b) Abu-Yousef, I. A.; Harpp, D. N. *J. Org. Chem.* **¹⁹⁹⁷**, *⁶²*, 8366- 8371. (c) Huang, R.; Espenson, J. H. *J. Org. Chem.* **¹⁹⁹⁹**, *⁶⁴*, 6374-6379. (d) Grainger, R. S.; Procopio, A.; Steed, J. W. *Org. Lett.* **²⁰⁰¹**, *³*, 3565- 3568 and references therein.

⁽¹⁴⁾ It has been reported that thiirane oxide, which is a source of SO, and di-*p*-anisyl thioketone were heated in refluxing toluene to give 2,2-di*p*-anisyl-1,3-dithiolane and its 1,1-dioxide: Aalbersberg, W. G. L.; Vollhardt, K. P. C. *J. Am. Chem. Soc.* **¹⁹⁷⁷**, *⁹⁹*, 2792-2794.

⁽¹⁵⁾ The yields were determined by measuring the 1H NMR spectrum of the pyrolysate with 1,2-diphenylethane as the internal standard.

⁽¹⁶⁾ Dithiirane 1-oxide **16** was isolated by means of silica gel column chromatography followed by HPLC as a mixture with *cis*-**6**, *trans*-**6**, **12**, and di-1-adamantyl ketone in the molar ratio of 86/1.3/1.3/1.3/10. The yield (41%) was calculated based on the weight of the mixture and the molar ratio detemined by 1H NMR spectroscopy. The molar ratio of **16**/(*E*)-**10**/ (*Z*)-**10**/*cis*-**6**/*trans*-**6**/**11** in the reaction mixture was 55/37/41/2/2/18.

⁽²²⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, Revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.

Figure 2. Relative energy (kcal mol⁻¹) of intermediates and transition states in decomposition of 3,3-di-*tert*-butyldithiirane *trans*-1,2dioxide (19), calculated at the B3LYP/6-311++G^{**} level including zero-point vibrational energy corrections: $(-)$ singlet potential energy surface; $(- -)$ triplet potential energy surface.

takes place to give biradical 23 (5.9 kcal mol⁻¹). The intermediate 23 decomposes to t -Bu₂C=S=O and ³SO (2.0) kcal mol⁻¹) through TS5 (14.4 kcal mol⁻¹).

Thus, calculations show that decomposition to t -Bu₂C=S and $SO₂$ was much more favorable energetically than decomposition to t -Bu₂C=S=O and ³SO and isomerization to *cis*-1,2-dioxide **20**. Simultaneously, however, the calculations exhibit that decomposition to t -Bu₂C=S=O and ³SO was much more favorable kinetically than the other two pathways (decomposition to t -Bu₂C=S and SO₂ has a lower TS than epimerization to **20**). These theoretical results are in harmony with the experimental results that decomposition to t -Bu₂C=S=O and ³SO is the main path and that to t -Bu₂C=S and SO₂ is the minor one. We did not observe compounds corresponding to **20**, **21**, or **22** experimentally. Incidentally, generation of triplet SO by thermal decomposition of thiirane oxide was proposed, $2³$ though an argument arose.14

In summary, we have succeeded in the synthesis of the first isolable dithiirane 1,2-dioxide, a three-membered *vic*disulfoxide. The thermal decomposition of the 1,2-dioxide was investigated experimentally and theoretically. Work on synthesis of dithiirane 1,2-dioxides from other isolable dithiirane 1-oxides is in progress.

Supporting Information Available: Experimental details of oxidation of *cis*-**6** with DMD to give **9** and thermal decomposition of **9** in the presence of **15** to give **16**, and X-ray crystallographic analyses for *trans*-**6** and **9**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052570F

^{(23) (}a) Chao, P.; Lemal, D. M. *J. Am. Chem. Soc.* **¹⁹⁷³**, *⁹⁵*, 920-922. (b) Lemal, D. M.; Chao, P. *J. Am. Chem. Soc.* **¹⁹⁷³**, *⁹⁵*, 922-924.